Monday, May 12, 2014

Cross Product of Two Vectors

Today we learned about one of the hardest things ever to cross a papers face. I can assure you this is quite a bit of information so hold ok to your seats folks. Also much of this is from the book so my apologies if you cannot understand the written out verbage. Hopefully the pictures help! 

 Let = u1+ u2+ u3kand = v1+ v2+ v3 be vectors in space. The cross product of and is the vector. u x v = (u2v3 - u3v2)- (u1v3 - u3v1)+ (u1v2 - u2v1)k. A convenient way to calculate u x v is to use the following determinant form with cofactor expansion. (This 3 x 3 determinant form is used simply to help remember the formula for the cross product--it is technically not a determinant because not all the entries of the corresponding matrix are real numbers). 


Example 1: Finding Cross Products
Given u = i + 2j + k and = 3i + j + 2k, find the following:
a) u x v 
b) v x u
c) v x v


Algebraic Properties of the Cross Product
1) u x v = -(v x u)
2) u x (v + w) = (u x v) + (u x w)
3) c (u x v) = (cu) x x (cv)
4) u x 0 0 x u 0
5) u x u 0
6) u x (v x w) (u x v) x w

Geometric Properties of the Cross Product
This property indicates that the vectors u x v and v x u have equal lengths but opposite directions. 
Let and be nonzero vectors in space, and let theta be the angle between andv. 
1) u x v is orthogonal to both and v.
2) ||u x v|| = ||u|| ||v|| sin theta.
3) u x v if and only if and are scalar multiples.
4) ||u x v|| = area of parallelogram havingand as adjacent sides.

Example 2: Using the Cross Product
Find a unit vector that is orthogonal to both
= 3- 4and = -3+ 6j

The Triple Scalar Product
For vectors u, v, and in space, the dot product of and v x w 
is called the triple scalar product of u, v,and w. 

If the vectors u, v, and do not lie in the same plane, the triple scalar product u x (v x w) can be used to determine the volume of the parallelpiped with uv, andas adjacent edges. 



Geometric Property of Triple Scalar Product:


Example 4: Volume by the Triple Scalar Product
Find the volume of the parallelpiped having
u = 3- 5kv = 2- 2k, and w = 3+as adjacent edges. 



3 comments:

  1. It's a nice post about cross product of two vectors. I like the way you have described it. It's really helpful. Thanks for sharing it.

    ReplyDelete
  2. 2) ux ( v + w ) = ( uxv ) + ( uxw ) me podrias explicar esta propiedad

    ReplyDelete